

ELECTRIC MACHINES – EUROLAB – 0.3 kW

CONTROL UNITS

SPEED CONTROL OF AC MOTORS

DL 3309

The objective of this unit is to demonstrate the PWM technique for piloting a three-phase inverter used for the variable frequency control of the speed in a three-phase asynchronous motor.

Digital control inverter programmable from keyboard with on screen guide. The speed control can be realized through manual control of a potentiometer or through closed loop tachometric control.

The acceleration and deceleration ramps can be separately regulated from 5 to 15 seconds approx.

Inversion of the sense of rotation. Instrument for the rotation speed.

Technical features:

- Power: 550 W
- Maximum output voltage: 3 x 220 V
- Rated current: 3 A
- Output frequency: 0 to 240 Hz
- V/F ratio: constant/squared.
- Direct current braking.
- Protections against minimum/maximum supply voltage,
- thermal protection and limitation of the output current.
- Power supply: 1 x 220 V + N, 50/60 Hz

Accessories:

DL 30115 SQUIRREL CAGE THREE-PHASE ASYNCHRONOUS MOTOR

DL 30300 EDDY-CURRENT BRAKE

DL 1054 POWER SUPPLY FOR THE BRAKE

DL 1013A BASE

SPEED CONTROL OF DC MOTORS

DL 3315

Semi-controlled single phase bridge. Suitable for the control of the speed of independently excited dc motors. The control is performed by regulating the conduction period of a single-phase semi-controlled thyristor bridge both in open and closed loop.

The controller consists of three control loops: speed, current and armature voltage.

Technical features:

• Power of the motor: 550 W max.

• Power of the converter: 900 W max.

• Armature voltage: 0 ÷ 180 V

• Armature current: 5 A max.

Excitation voltage: 200 V, 0.5 A

• Power supply: 220 V, 50 Hz.

Accessories:

DL 30200 DIRECT CURRENT MOTOR SHUNT EXCITATION

DL 30300 EDDY CURRENT BRAKE

DL 1054 POWER SUPPLY FOR THE BRAKE

DL 1013A BASE

Suggested

DL 2315T ISOLATING TRANSFORMER